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ABSTRACT

A maximal vector of a set is one which is not less than any other
vector in all components. We derive a recurrence relation for computing
the average number of maximal vectors in a set of n vectors in d-space
under the assumption that all (n‘.)d relative orderings are equally
probable. Solving the recurrence shows that the average number of
maxima is O0((ln n)d-l). We use this result to construct an algorithm for
finding all the maxima that has expected running time linear in n (for
sets of vectors drawn under our assumptions). For a given set of random
points, the result is also used to derive an upper bound on the expected
number of points from the set which are on the boundary of the convex

hull of the set.
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1. INTRODUCTION

The problem of finding all maximal vectors in a set of n d-vectors

has recently been studied by Kung, Luccio and Preparata [3] and F. Yao
[(7]. 1In this paper we consider the related problem of finding the

expected number of maximal elements in a given set. We give a solution

to that problem under a very general probability distribution and then
apply the answer to the solution of related problems.

A maximal vector is one which is not less than any other vector in
all components. More precisely, we say that a vector P dominates the
vector Q if P is greater than Q in every component; then a vector is
maximal if it is not dominated by any other vector in the set. For
I example, in {(1,2,4), (2,3,1), (3,1,3), (4,4,2)}, only (2,3,1) is not
maximal. It is helpful to view this problem geometrically when d = 2.
In that case the vectors can be considered as n points in the plane and

| a given vector is maximal if and only if there is no point in its first

quadrant (above it and to its right).

A probability distribution is implied as we ask for the expected
number of maxima. A mathematically tractable yet reasonabel model
assumes that for each vector, the magnitude of one component is dis-

tributed independently of the magnitude of the other components and, for !

each component, the magnitudes chosen for each vector are distinct. The {

second restriction implies that the vectors can be sorted into increasing

order on any component, yielding a relative ordering from 1 to n. Thus |

each set of n d-vectors corresponds to a particular relative ordering

d
for each component, that is, to one of (n!) assignments of permutations




of (1,2,3,...,n) to the d components. Examples of multivariate statis~
tical distributions with distinct compoments distributed independently
include the multivariate normal and multivariate uniform drawn from a
unit hypercube. (Recall that elements drawn independently from any con-
tinuous distribution function are distinct with probability one.)

The solution to the maximal vector problem is often required in the
analysis of the runtime of dynamic programming algorithms (see Schkolnick
[5] and Schkolnick and Thompson [6]). In dynamic programming the solu-
tion to a problem of size n is obtained from the best solutions of prob-

lems of size n-1. For many applications a cost vector of length one is

sufficient, i.e., there is a single best solution to all subproblems. 4
In cases where more than one best solution must be retained for each sub-
problem, it may still be possible to design a multidimensional cost func-
tion with the property that the best solutions for every subproblem are
just the maximal ones. 1If the cost vectors of candidate solutions are
assumed to have the proper distribution, then the maximal vector problem
indicates the expected number of best solutions.
In Section 2 we formulate and solve a recurrence that shows that the
expected number of maxima among n d-vectors is O0((ln n)d-l). We use this
result in Section 3 to give an algorithm for finding all the maxima of a
set of n d-vectors that has expected running time linear in n. In Section }
4 we show for a given set of random points, how this result gives an upper

bound on the expected number of points from the set which are on the

boundary of the convex hull of the set. ]




2. DETERMINING THE AVERAGE NUMBER OF MAXIMA

In this section we derive the primary result of this paper. We
give two derivations of this result. Our first derivation is formal and
therefore rather complicated, so we supplement that with a second, in-
formal derivation. The second derivation is not completely precise, but
it does give an intuitive idea of the essential workings of the formal
derivation. We proceed directly with the formal derivation; the informal

begins immediately after the statement of Theorem 2.

Let A(n,d) be the average number of maximal vectors out of n d-vectors.
Without loss of generality, assume that the vector components in each dimen-
sion are integers from 1 to n. We shall therefore view a set of n d-vectors
as a d by n array, whose rows are the vectors and whose columns are permuta-
tions of {1,2,...,n}. Let S be the set of all such arrays. Then S contains
(n'.)d arrays. For any array r in S, let M(r) denote the number of maximal

vectors in r. By the definition of A(n,d), we have

.
i M(x)
r€s

s

A(n,d) =

Let T be a subset of S which consists of arrays with their first columns equal
to (1,2,...,n)T. Because M(r) is invariant under permutations of the rows in

r, it follows that

Ld M(x) = ;1‘—. L M(r) .
r €T ré€S
Thus,
(2.1) (n'.)d'lA(n,d) = 2“(‘)-
r €T




Any array r in T can be decomposed as

region 1 { 1

r._

(o]

region 2 <

e A ]

where B = (2,3,...,n)T. (Region 1 contains only one vector, namely, (I,Ar).)
For i = 1,2, define Mi(r) to be the number of maximal vectors in r which

are in region i. Thus,
(2.2) M(x) = Ml(r) + Mz(r).

fote that Ml(r) is either zero or one.) Taking sums in both sides, we have

by (2.1),
d-1 % v
(2.3) (nl)" A(n,d) = ) Mi(¥) + ) My ().
T €T vel

Lemma 1
Zml(r) =% (n'.)d-lA(n,d-l).
r €T

Proof

Note that Z‘Ml(r) is the number of times, over all r in T, vector (I,Ar)
r€T

is maximal in r. Note also that vector (I’Ar) is maximal over all n d-vectors

in r if and only if vector Ar is maximal over all n (d-1)-vectors in the sub=-




A -
array o . Then ) M (r) is simply the number of times, over all r in T, the
C 7 | ’

r

c
T

r€T A
vector Ar in the firs row is maximal in [ d . Since over all r in T there
are (n!)d-lA(n,d-l) maximal (d-1)-vectors and the number of maximal vectors

occurring in each row is the same, it follows that

L@ = 2@ lam,en. a
r€T
Lemma 2 ~
M@ = @) a@1,0.
€T
Proof

Consider an array r in T. Note that a d-vector in region 2 is maximal
over all n d-vectors in r if and only if it is maximal over all n-1 d-vectors
in region 2. Therefore, for any r in T we shall consider only region 2.

L.MZ(r) is the number of occurrences of maximal vectors in region 2 over all

r;Tin T. Let A be a fixed (d-1)-vector. Over all r in T where r has (1,A) i

as its first row, there are ((n-l)l)d-lA(n-l,d) maximal d-vectors occurring

in region 2. Since A may be chosen in nd-l ways, we have ;
e d-1 ‘
Z‘Mz(r) = (n!) “A(n-1,d). a

Ls o

r€T

The following theorem follows from (2.3) and Lemmas 1 and 2.
Theorem 1
A(n,d-1)
n ’

(2.4) A(n,d) = A(n-1,d) +

for n, & = 2,




It is easy to check that

(2.5) A(1,d) =1 ford 21,
and

(2.6) A(n,l) =1 fornmn 2 1.

The recurrence (2.4) with initial conditions (2.5) and (2.6) can be solved

by first setting up the generating functions

G (2) = Z‘A(n,d+1)2d, for n = 1.
d=0

By (2.4) and (2.6),

Gn(z) = Gn-l(z) + % Gn(z), or

G

2.7 6 (2) = pos

1 - —

for n 2 2. By (2.5), Gl(z) = 1/(1-z). Hence (2.7) implies that

1sisn 1 - I

which is Eq. (33) of Section 1.2.9 in Knuth [1] with x, = 1/i. Define

ko S W s SRS T
™ 5 n’t

Knuth's analysis shows that the coefficient of zd in Gn(z) is

k

, K K
L K K, L
Ry oKopeess k20 1 Dk, 2 2t d dkd!

1 A 1 2
k1+2§2+...+3kd d
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which is, by definition, A(n,d+1). Clearly,

(D
(2.8) A(n,d) z————(d ST H (n et

The values of A(n,d) for small d are

AG,D =1,
a@,2) = K @), which is the nth harmonic number H_,
2@ =7 8P % + 2aP @),

a@s) =38V @+ 280 @ 1P + 1@ w.,

It is pnot difficult to show that the sum of the coefficients in A(m,d)

is always 1. (For example, the sum of the coefficients in A(n,4) is

(1)(n)t for n, r 2 1, we have

+ = 1.) Since H(r)(n) <H

N
W)

1
3 +

(1) . d=~1

(2.9) A(n,d) <H (n) .

By (2.8) and (2.9) we have

Theorem 2

(1) d-1

P! sam,d) s 58P @t

(d-l)'

Therefore, A(n,d) = 0((In n)d-l) for fixed d.

We now give a more intuitive derivation of the recurrence for
A(n,d). As we stated previously, this derivation is not precise, but
it should help in getting an intuitive idea of the workings of the

previous proof. To compute the expected number of maxima in a set we

1_,_-‘“-‘
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will consider the set sorted in order vy the first coordinate. (As before,
we consider that all numbers have been transiated to the integers from 1 to_.-

n.) The situation we now have is illustrated in the following figure.

d-1
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We now ask what is the probability that the i-th vector in the set is a
maximum? Since its first coordinate is greater than the first coordinates

of the 1l-st through the (i-1)-st vectors, it cannot be dominated by any of
those. Thereiore the i-th vector is a maxima if and only if its remaining

d-1 coordinates are maximal in the set of the i-th through the n-th vectors.
The probability that the i-th vector is a maximal in this set is, by indepen-
dence, the expected number of maxima in the set (which is A(n-i+l,d-1))

divided by the total number of vectors in the set (which is n-i+1). Since these
probabilities are indepndent for all values of i, to find the expected number
of maxima in the set we sum the probabilities of each vector being maximal

and we have

n
' -i+l,d-1
Angd) = | SN ey )
i=1
L2
i A(4,d-1)
= :




=0

Notice that the last sum is equivalent to the expression for A(n,d) in
Theorem 1.

We now give a simpler (and less precise) bound on the growth of A(n,d).
It is obvious that A(n,d) must be monotone increasing in n, so if j < n

then A(j,d) S A(n,d). We use this observation in the following derivation.

a
A(j,d-1)

A(n,d)

I

A(n,d-1)
1. Ja
A(n,d-1)
j=1
A(n,d-1) H .

]

[ e

)

(n) .
Iterating this recurrence on d easily gives the upper bound

A(n,d) s gD 91,
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3. A FAST EXPECTED TIME MAXIMA ALGORITHM

So far in this paper we have considered the problem of counting the num-
ber of maxima in a set of vectors; a related problem is finding the maxima in a
set of vectors. This problem has received much attention recently. Kung,
Luccio and Preparata [3] give an algorithm for finding the maxima of n vectors
in d-space that has worst-case running time of O(n ln n) for d = 2 and
0(n(ln n)d-z) for d 2 3. F. Yao [7] shows that the results in 2 and 3-space
are optimal by giving a worst-case lower bound of O(n ln n) (indeed, she gives
a bound that is the exact number of comparisons taken by a known algorithm for
planar sets).

These results, however, deal only with the worst-case complexity of find-
ing maxima; it is often interesting to consider also the average-case complexity.
In this section we will use Theorem 2 and a general divide and conquer schema to
give a fast expected time algorithm for finding maxima (this schema is invest-
igated in detail by Bentley and Shamos [l1]). The algorithm we develop here
will have expected running time linear in n for vector sets drawn under the
"Independent and Distinct" assumptions stated in Section 1.

Our maxima algorithm is easily described recursively. Without loss of
generality, we assume that n is a power of two. To find the maxima of a set S
of n vectors, divide S into two sets A and B, each containing n/2 vectors.
Recursively find the maxima of A and B, calling those sets MA and MB’ respec-
tively. It is easy to see that the set of maximum vectors of S is the set of
maxima of M, U MB. Therefore we can find all the maxima of S by finding

A

the maxima of M, Y Mp; to do this we use the algorithm of Kung, Luccio and

Preparata [3]. (Recursion in cur original algorithm stops when n is less than




2

some predefined constant.) The division into subproblems can be implemented

on a random access computer by storing the vectors in a d by n array of scalar
values. Each vector is initially represented as a pair of integers which
define the left and right endpoints of a segment in the array. Division into
further subsets can be accomplished by taking the arithmetic mean of the end-

points as defining two new segments, etc.; note that the division preserves

randomness and can be accomplished in constant time.

The expected running time of this algorithm is easy to analyze, given that
the expected number of maxima in a set of n d-vectors is 0((ln n)d-l). Since
division into subproblems can be accomplished in constant time, the recurrence

describing the expected running time of our algorithm on n d-vectors is
(3.1 T(n,d) = 2T(n/2,d) + F(n,d)

where F(n,d) is the expected running time of the marriage step (finding the maxima
, " ’

of MA U MB). Let i be the number of vectors in MA U MB. Then the running

time of the marriage step using the algorithm of Kung, Luccio and Preparats is

d-
bounded above by O0(i(ln i) 2) for d 2 3. This gives

n
F(n,d) £ , p(d) * i(ln 1%
i=1

where p(i) is the probability of there being exactly i maxima in MA U MB. By
the fact that the number of maxima in A is independent of that in B, the expect-

ed value of i satisfies:




E(1) = p(i) - i

1

NCoe

2. (expected number of maxima in a set of n/2 d-vectors)

2 - o((la H¥H

gtonm Y,

Therefore, by In i < 1ln n, we have

n

(3.2) F(n,d) S (In n)d"'L p(d) - 1
i=1

T e

Substituting (3.2) into (3.1) gives for the running time of our algorithm the

recurrence

T(n,d) < 2T(n/2,d) +0((ln n)2¢3y.

For fixed d, this recurrence is well known to have the solution
T(n,d) = 0(n).

In addition to having a very fast expected running time, our algorithm
also has quite a respectable worst-case performance. Note that F(n,d) is always
d-
bounded above by O(n(ln n) 2) for d 2 3, so the worst-case running time of

our algorithm is given by

d-2
T(n,d) = 2T(n/2,d) + O(n(ln n) )
which has the solution

T(n,d) = O(n (ln Sl
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Thus in the worst-case our algorithm is only a factor of ln n slower than the
best known worst-case algorithm.

We summarize the main result of this section in the following theorem.

Theorem 3.
The maxima of a set of n d-vectors drawn from a distribution satisfying the

"Independent and Distinct'" property can be found in expected time linear in n.




T A

4. RELATION TO CONVEX HULLS

The maximal elements of a set of vectors are a crude representation of
the boundary of the set; the boundary can be more precisely defined as the
boundary of the convex hull of the set. While working with the convex hull
we will view the vectors as points in d-space. The convex hull of the n points
is then defined as the smallest convex set containing the n points. One can get
an intuitive picture of the convex hull of a planar point set by imagining the n
points as n nails in a large board, with about an inch of each nail remaining
above the board. The convex hull of this set can be found by taking a large
rubber band, stretching it infinitely far out in all directions, then letting it
go. It will come to rest about certain of the nails, and the region within the
rubber band is the convex hull of the set.

Given a set of n points sampled independently from some underlying proba-
bility distribution function in d-space, what is the expected number of points
on the resulting convex hull? (Here we use the abbreviation "on the convex
hull" to mean "on the boundary of the convex hull".) The answer to this ques-
tion is of course dependent of n, d, and the underlying distribution. Santalo
[4] describes a number of results for different distributions; many of these
results and their original references are given in Bentley and Shamos [1]. 1In
this section we will give an upper bound on the number of hull points for dis-
tributions satisfying our requirement of independence among the d variables.

To arrive at this bound we will first show that every convex hull point is a
maximum under at least one of the Zd possible different assignments of + and -
signs to the d components, and then use this fact and Theorem 2 to bound the

expected number of hull points.

R ——

e

R
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To show that every convex hull point is a maximum under at least one of
the assignments of + and - signs, assume that there is some hull point h which
is not. This implies that there is at least one point in each of h's 2d
orthants; choose one point from each orthant and call this collection P. Because
values are distinct, all points in P are properly contained in their orthants.
Consider now the convex hull of P; it must properly contain h. (If it contained
all the points of P and not h, then it would not be a convex set.) Since h is
properly contained in the convex hull of P it must also be properly contained
in the convex hull of the original set. This contradicts our assumption and
establishes the desired fact.

We have shown that every hull point is a maximum under at least one of the
2d possible assignments of + and - signs to the d variables. Consider now the
set of all points that are maximal under at least one of the sign assignments;
call this set M. Since the expected size of M is bounded above by

d-
2d « 0((ln n) 1), and M contains all convex hull points, the expected number

of convex hull points is certainly bounded above by that expression. Thus we

have the following theorem.

Theorem 4.
The expected number of convex hull points in a point set of n points in d !
dimensions satisfying the "Independent and Distinct' property is bounded above

by o(ctn ;T Y. 3
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